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Abstract

State-of-the-art rare variant association testing methods aggregate the contribution of rare

variants in biologically relevant genomic regions to boost statistical power. However, testing

single genes separately does not consider the complex interaction landscape of genes, nor

the downstream effects of non-synonymous variants on protein structure and function. Here

we present the NETwork Propagation-based Assessment of Genetic Events (NETPAGE),

an integrative approach aimed at investigating the biological pathways through which rare

variation results in complex disease phenotypes. We applied NETPAGE to sporadic, late-

onset Alzheimer’s disease (AD), using whole-genome sequencing from the AD Neuroimag-

ing Initiative (ADNI) cohort, as well as whole-exome sequencing from the AD Sequencing

Project (ADSP). NETPAGE is based on network propagation, a framework that models

information flow on a graph and simulates the percolation of genetic variation through tis-

sue-specific gene interaction networks. The result of network propagation is a set of

smoothed gene scores that can be tested for association with disease status through sparse

regression. The application of NETPAGE to AD enabled the identification of a set of con-

nected genes whose smoothed variation profile was robustly associated to case-control sta-

tus, based on gene interactions in the hippocampus. Additionally, smoothed scores

significantly correlated with risk of conversion to AD in Mild Cognitive Impairment (MCI) sub-

jects. Lastly, we investigated tissue-specific transcriptional dysregulation of the core genes

in two independent RNA-seq datasets, as well as significant enrichments in terms of gene

sets with known connections to AD. We present a framework that enables enhanced genetic

association testing for a wide range of traits, diseases, and sample sizes.
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Author summary

In the biomedical field there is ever increasing availability of data from sequencing-based

methods, such as whole-genome or whole-exome sequencing, that can greatly help eluci-

date the role of rare genetic variants in the aetiology of common diseases. However, state-

of-the-art rare variant association methods are vastly underpowered in small to medium-

sized studies and therefore novel methodologies are needed to leverage these datasets

while integrating information from different genomic sources. To this end we present

NETPAGE, a gene-based association testing method that models how the effect of rare

deleterious variants spreads over gene interaction networks. NETPAGE is robust and flex-

ible, and can be applied to different diseases, sample sizes, and types of traits (binary or

continuous). We demonstrate the successful application of NETPAGE to two Alzheimer’s

disease cohorts of different sizes and sequencing methods, identifying connected hub

genes and communities underlying biological processes and pathways involved in Alzhei-

mer’s and other neurodegenerative diseases, and that could be considered as potential

drug targets.

Introduction

The advent of next generation sequencing (NGS) has drastically changed the genetic landscape

of both complex and Mendelian traits, widening the range of approaches to investigate the

genetic bases of human phenotypes. Using SNP-array genotyping technologies, large scale

studies involving 100,000s of participants are focusing on common variants in order to identify

loci associated with complex traits [1]. However, owing to natural selection, common variants

typically do not impart major risk for disease [2], with rare exceptions of variants such as the

ε4 allele of APOE in Alzheimer’s disease (AD) [3,4]. Loci identified in genome wide associa-

tion studies (GWAS) are often flagging the existence of haplotypes harbouring rare variants

with strong disease effects and therefore have to be followed up by fine-mapping to identify

the true causal variants.

NGS, by contrast, is most effectively used when focusing on rare genetic variants, private

mutations or structural genome changes. These types of rare variants have the possibility to

exercise a large effect on disease risk and often show a Mendelian inheritance pattern, thus

being at the core of familial forms of many disorders; prominent examples are rare variants in

APP, PSEN1, and PSEN2 in familial AD [5] or variants in MAPT, GRN and C9orf72 in fronto-

temporal dementia (FTD) [6]. The decreasing costs for NGS have enabled the establishment of

large whole genome (WGS) or whole exome (WES) sequencing studies such as the AD

Sequencing Project (ADSP) [7]; still the largest studies are two orders of magnitude smaller

than the largest GWAS (i.e., 10,000s vs a million participants). Moreover, by definition, rare

variants are not frequent in the population and it is unlikely for the same rare variant to be

shared by many subjects in a study with limited sample size. Therefore, the resulting data

matrix of subjects × rare variants is sparse. This drawback is often addressed with alternative

study designs such as “extreme phenotyping”, based on the assumption that rare variants accu-

mulate in the extreme tails of the phenotype distribution.

Low sample size and sparsity pose a problem for analysing these types of genetic data: two

determinants of the statistical power for classical association studies are sample size and allele

frequency, leading to low statistical power in rare variant association analyses when relying on

the typical single-variant GWAS methodology. This problem has motivated the development

of advanced statistical methods, reviewed elsewhere [8]. The most straightforward approach is

PLOS COMPUTATIONAL BIOLOGY Network propagation of rare variants in Alzheimer’s disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008517 January 7, 2021 2 / 27

from dbGaP (accession ID: phs000572.v7.p4),

whereas ADNI WGS data files are available without

restrictions from ida.loni.usc.edu.

Funding: MAS acknowledges financial support by

the EPSRC-funded UCL Centre for Doctoral

Training in Medical Imaging (EP/L016478/1). MDG

was supported by the NIH (P50 AG047366). AA

holds an MRC eMedLab Medical Bioinformatics

Career Development Fellowship. This work was

supported by the Medical Research Council [grant

number MR/L016311/1]. The funders had no role

in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1008517
http://ida.loni.usc.edu


the gene-wise burden test, i.e., for each gene the number of rare nonsynonymous variants is

counted per participant and the gene burden is compared between cases and controls. The

underlying assumption, in order to convert a sparse matrix into a non-sparse one, is that

affected individuals tend to carry mutated versions of key genes, while healthy individuals do

not. This assumption has been proven to be correct in the case of HDL cholesterol levels [9].

This basic model has been superseded by methods based on the Sequence Kernel Association

Test (SKAT) [10], which performs a variance-component test: this assumes that the genetic

effect for a given variant (regression coefficient for the SNP in a mixed model) follows a distri-

bution with mean 0 and variance w2
j t, and then tests the null hypothesis H0: τ = 0. One key

advantage of this test is that the rare variants within the gene do not have to influence the dis-

ease risk in the same direction. SKAT has been successfully used to study rare variants in a

number of diseases such as AD [11], schizophrenia [12], and health and disease more generally

[13].

Still, SKAT and its extensions focus on predefined genetic regions, such as genes or even

pathways. Recent observations, however, suggest that the underlying nature of genetic effects

is more complicated. For instance, the recently proposed omnigenic model for complex traits

[14] postulates that genetic variation percolates through gene interaction networks and that,

due to the small-world property of such networks, any gene is only a few steps away from the

“core” genes with specific roles in disease etiology, such that the effect of variation flows from

peripheral genes to “core” genes. In fact, an exonic, deleterious variant within a gene by defini-

tion will lead to changes in the resulting protein (e.g., amino acid substitution, premature trun-

cation of transcription, loss of a stop codon). These changes will in turn affect the protein’s

downstream interactions within the cell environment. Ultimately this may disrupt one or

more molecular pathways through a chain reaction (or domino effect). This small-world prop-

erty implies that variants in different, unrelated genes and different patients can “converge”

and exert their effect on the same core gene (Fig 1). Furthermore, complex traits are mediated

through multiple tissues or cell types and, consequently, the quantitative effect of genetic varia-

tion will vary across tissues owing to differences in gene and protein interaction networks.

In this work we propose a gene-based test for rare variation whose rationale resembles the

omnigenic assumption. In particular, we leverage the network propagation approach, which

models a diffusion process or information flow on a graph structure, in order to delineate the

percolation effect of genetic variation through gene networks. Additionally, we embed tissue

Fig 1. NETPAGE combines network propagation with sparse regression to follow the pathways by which rare variants percolate

through gene interaction networks. In the network propagation process, the flow of information through the network is controlled by

the diffusion length α. The matrix G in the formula represents the variation burden at iterations t and t+1; while D�N is a degree-

normalised adjacency matrix of the gene interaction network (see Methods). The result of network propagation is a set of smoothed

gene scores tested for association with disease status through sparse regression and stability selection.

https://doi.org/10.1371/journal.pcbi.1008517.g001
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specificity in our framework by using tissue-specific gene-interaction networks obtained from

Greene et al. [15]. Network propagation is an established approach that has enabled methodo-

logical advances as well as important findings in many research fields. In particular, it has been

defined as an “universal amplifier of genetic associations” [16]. In brief, network propagation

has been successfully applied to various bioinformatics tasks, such as the prioritization of dis-

ease-associated genes based on gene interactions and disease similarities [17] or based on a

modified version of Google’s PageRank algorithm [18], and the stratification of tumour sub-

types based on somatic mutation signatures [19]. A more comprehensive review of applica-

tions of network propagation can be found elsewhere [16]. Notably, an early attempt at gene

prioritisation based on tissue-specific interaction networks dates back to 2012 [20]. However,

the networks developed for this work leveraged the tissue specificity of gene expression only,

whereas Greene et al. [15] integrated a much wider variety of genomic data types, comprising

gene co-expression, transcription factor regulation, protein interaction, chemical and genetic

perturbations, and microRNA target profiles.

Here we present the NETwork Propagation-based Assessment of Genetic Events (NET-

PAGE), an integrative approach that combines network propagation with sparse regression in

order to investigate the biological pathways through which genetic variation affects tissue func-

tion and results in complex disease phenotypes. Our approach is highly generalisable and

enables enhanced genetic association testing for a wide range of complex traits (binary and

continuous), diseases, and sample sizes. As a specific proof of concept, we applied NETPAGE

to study rare genetic variation in a small whole genome sequencing (WGS) dataset focusing on

sporadic late-onset AD obtained from the AD Neuroimaging Initiative (ADNI), as well as a

medium-sized whole exome sequencing (WES) dataset from the AD Sequencing Project

(ADSP).

Results

Method overview

NETPAGE combines network propagation with sparse regression to identify genes robustly

associated with a phenotype (Fig 1). In this work we focused on rare, exonic, deleterious Single

Nucleotide Variants (SNVs) from WGS or WES; different criteria for the selection of rare dele-

terious SNV were utilised, to assess their impact on the association testing results (see Methods

for details). SNVs were projected onto a gene interaction network. We compared the hippo-

campus network derived by Greene et al. [15] with the whole, non-tissue-specific human inter-

actome available in STRING [21]. Network propagation is then used to model the propagation

of the effects of rare variants through the network. Network propagation results in a set of

gene-wise, continuous “smoothed” scores that are then tested for robust association with a dis-

ease phenotype through sparse regression (LASSO [22]) and stability selection [23]. NET-

PAGE is not intended as a classification tool, hence we did not investigate its prediction

performances in the classic machine-learning sense.

Network propagation: simulations

In order to explore the effect of different parameters in the network propagation algorithm we

conducted a series of simulations to map out reasonable default parameters for the algorithm.

We chose to implement a simulation framework for this task because the standard approach of

optimizing cross-validated prediction performance was not informative in this setting due to

the narrow range of performance values. The key parameters of network propagation are the

distance a SNV signal is allowed to travel through the network (termed diffusion length α
from now on), and the percentage of top edges to be retained in the network in a procedure

PLOS COMPUTATIONAL BIOLOGY Network propagation of rare variants in Alzheimer’s disease

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008517 January 7, 2021 4 / 27

https://doi.org/10.1371/journal.pcbi.1008517


called binarization (see Methods). We generated synthetic datasets, varying parameters of

SNV frequency in cases and controls, and applied network propagation using varying parame-

ter settings of the algorithm. In these simulations we focus on an un-mutated target gene and

vary the SNV frequency in the gene’s neighborhood differentially between cases and controls.

Next, we test how well the smoothed score obtained through network propagation in the target

gene separates cases from controls. Further details can be found in S1 Text. A summary of

results from the investigation of the parameter space for network propagation on simulated

data can be found in Figs 2 and S1. We observed (S1B Fig) that variation in both diffusion

length α and percentage of edges retained influences the difference in a hub gene’s smoothed

score between cases and controls only marginally. Therefore we adopted a parsimonious

approach and selected as default parameters for real data applications a mid-range α value of

0.5 and a top edge percentage of 1%. As expected, for α = 0 no propagation occurs. We also

observed (S1A Fig) a detrimental effect on the smoothed scores (loss of statistical significance)

when quantile-normalisation, which is used in Hofree et al. [19], is applied at the end of net-

work propagation, therefore we decided to exclude this step from our pipeline.

NETPAGE: application to AD sequencing data

After verifying that the network propagation step alone works as expected, we applied the

complete NETPAGE framework, with the full-scale hippocampus gene interaction network, to

two independent, real-world NGS datasets: one with a small sample size (ADNI), and another

with a medium sample (ADSP).

Fig 2. A selection of simulation results. The x and y axis represent the SNV frequencies in controls and cases respectively. The faceting allows to visualise the effect of

other parameters (diffusion length, quantile normalisation). The colour-coding indicates the statistical significance of the difference in the hub gene smoothed score

between controls and cases, in units of -log10 p-value (Bonferroni corrected). We investigated three mutation scenarios: scenario 1, only first neighbours mutated;

scenario 2, only second neighbours mutated; scenario 3, both first and second neighbours mutated; the target gene is always unmutated. Cells marked with a black

cross indicate parameter combinations where the smooth score of the target gene was not significantly different between cases and controls. This set of tile plots shows

the effect of varying diffusion length quantile normalisation after network propagation with top 1% edges retained in scenario 3.

https://doi.org/10.1371/journal.pcbi.1008517.g002
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Small sample: ADNI. We used NETPAGE in ADNI to test smoothed scores for

M = 13,310 genes for association with binary disease outcome in N = 439 Caucasian subjects

(222 healthy controls [HC], 217 AD). One gene resulted from stability selection on the

smoothed scores in ADNI (Fig 3A): PFAS (selection probability = 0.85; Table 1). We replicated

the selection of PFAS when testing the gene burden propagated through the STRING network

(selection probability = 0.85; S2 Fig). No genes were selected when running stability selection

on the “raw” SNV profile (α = 0, no smoothing), nor when the SNV profile was smoothed

through either 30 degree-preserving randomised versions of the hippocampus network or a

non-brain-related network (umbilical cord; S3 Fig). The investigation of other, non-AD

related brain components or structures (neuron, medulla oblongata, diencephalon) resulted in

different or no associations (S4 Fig), hence reinforcing the idea that tissue-specificity is an

important factor to consider in association testing.

When a burden including only rare deleterious stop-gain, stop-loss and frameshift SNVs

was smoothed (through either the hippocampus or the STRING PPI network) and tested for

association with diagnosis, no genes were selected (S5 Fig).

Medium sample: ADSP. We used NETPAGE in ADSP to test smoothed scores for

M = 16,298 genes for association with binary disease outcome in N = 10,186 Caucasian subjects

(4601 HC, 5585 AD). Stability selection on the smoothed scores in ADSP identified 29 genes as

robustly associated with case-control status (Fig 3B). Selection probabilities for these 29 genes are

reported in Table 1. As an example, Fig 3C shows the subgraph of radius two centred on

CAMK2B, including interesting second neighbours of relevance to AD dementia or other neuro-

degenerative disorders. Eighteen genes selected from ADSP were found to be second neighbours

of the gene selected from ADNI (PFAS) in the hippocampus network. This number is significantly

higher than it would be expected by chance (p< 10−4; S5 Fig), indicating that NETPAGE-selected

genes in ADSP are overrepresented in the neighbourhood of PFAS. As common variants identi-

fied through GWAS are often tagging loci harbouring rare variants, S1 Table lists selection proba-

bilities for the 21 genes reported in a recent large scale GWAS for AD [24]. In terms of network

properties of the selected genes, S3 Table reports the degree of genes selected both in ADNI and

ADSP in the hippocampus network. The average degree of the network is 22, therefore all these

genes are hubs in the sense that their degree greatly exceeds the average.

Gene-based rare variant association testing

NETPAGE was compared to SKAT-O [25], a state-of-the-art method for gene- and set-based

association testing of rare variants. We therefore grouped 48,834 rare, non-synonymous SNVs

from 439 Caucasian ADNI samples to 13,591 genes and performed a gene-based test, control-

ling for age, sex, number of APOE ε4 alleles, years of education, and population structure (see

Methods). Additionally, to conduct a fair comparison to SKAT-O, a mass univariate test of

association between the smoothed gene scores and case-control status was also carried out via

logistic regression for M = 13,310 genes, controlling for the same confounders listed above.

After correction for multiple comparisons, no genes were significantly associated with case-

control status in either test (SKAT-O, S7A Fig; mass univariate smoothed, S7B Fig).

We also sought to compare SKAT-O and NETPAGE on a dataset where SKAT-O would be

sufficiently powered to detect associations [11]. We therefore grouped 270,165 non-synony-

mous SNVs from 10,186 Caucasian ADSP samples into 16,630 genes and performed a gene-

based test, correcting for age, sex, number of APOE4 alleles, and sequencing centre (sequenc-

ing platform was not included as covariate because concordant with centre). After correction

for multiple comparisons, no genes were significantly associated with case-control status in

ADSP (S8 Fig).
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Set-based rare variant association testing

Recent research has shown that the cumulative effect of rare deleterious variation in relation to

disease can in some cases be revealed by simply aggregating SNVs into genes and then path-

ways when running SKAT [26]. To demonstrate the added value of the network propagation

Fig 3. Stability selection results in ADNI (A) and ADSP (B), for a selection probability cutoff of 0.80. In these stability path plots, the x axis represents

values of the sparsity hyperparameter λ (see Methods, Eq 2) that controls the regularisation required by the LASSO; the y axis represents the selection

probability of a gene. Selection probability paths (trajectories) for different genes are represented by different colours. Genes whose trajectories crossed the

threshold of 0.80 selection probability were considered as robust predictors of case-control status and followed up in subsequent analyses. Panel (C) shows

the ego network of CAMK2B (selected in ADSP). Nodes coloured in bright green were identified by NETPAGE; nodes coloured in coral red are genes

linked to AD and other neurodegenerative disease in the literature.

https://doi.org/10.1371/journal.pcbi.1008517.g003

Table 1. Selection probabilities for the 30 genes whose smoothed score was identified as robustly associated with case-control status in ADNI and ADSP. Cells

shaded in blue contain genes selected in ADNI; cells shaded in green contain genes selected in ADSP. Genes highlighted in bold are second or closer neighbours of PFAS
in the hippocampus network.

Gene Selection

probability

Model comparison p-value (Bonferroni

corrected)

Gene Selection

probability

Model comparison p-value (Bonferroni

corrected)

NETPAGE—ADNI GNB1
chr 1p36.33

1.000 1x10-29

PFAS
chr 17p13.1

0.850 2x10-4 HIC2
chr 22q11.21

0.990 1x10-11

NETPAGE—ADSP KCNMA1
chr 10q22.3

0.980 4x10-13

ABR
chr 17p13.3

0.845 4x10-16 KLC1
chr 14q32.33

1.000 1x10-23

ADRM1
chr

20q13.33

0.965 6x10-16 MAPK11
chr 22q13.33

0.990 1x10-18

APPBP2
chr 17q23.2

0.905 4x10-22 MAPRE1
chr 20q11.21

0.825 1x10-16

ARL1
chr 12q23.2

0.990 3x10-22 MAPRE3
chr 2p23.3

0.970 1x10-13

ATXN10
chr

22q13.31

0.965 7x10-17 MOB4
chr

5p13.1-p12

0.895 1x10-28

CAMK2B
chr 7p13

0.960 1x10-7 MRPL17
chr 11p15.4

0.910 1x10-24

Gene Selection

probability

Model comparison p-value (Bonferroni

corrected)

Gene Selection

probability

Model comparison p-value (Bonferroni

corrected)

CAPNS1
chr

19q13.12

0.990 5x10-19 PPP1CC
chr 12q24.11

0.965 1x10-36

COPS5
chr 8q13.1

0.935 4x10-24 RAB1A
chr 2p14

0.845 2x10-12

CSNK1A1
chr 5q32

1.000 1x10-36 SHOC2
chr 10q25.2

0.995 1x10-28

CUL5
chr 11q22.3

0.995 4x10-27 TMEM147
chr 19q13.12

0.985 1x10-24

DCTN6
chr 8p12

0.940 2x10-27 TREM2
chr 6p21.1

0.990 0.14

DSTN
chr 20p12.1

0.935 2x10-33 UBL3
chr 13q12.3

1.000 4x10-33

EFNB3
chr 17p13.1

0.820 2x10-4 ZNF207
chr 17q11.2

0.995 3x10-27

https://doi.org/10.1371/journal.pcbi.1008517.t001
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step over this approach, we conducted set-based association testing for rare, deleterious SNVs

with case/control status in ADNI. Gene sets were defined from the results of stability selection:

each selected gene was grouped with its first neighbours in the hippocampus network. S2

Table reports association p-values with case-control status in ADNI for (A) burden, (B) vari-

ance-component, and (C) omnibus test (SKAT-O) for rare variants in the gene sets defined

around selected genes. The gene grouping around PFAS was not associated with case-control

status.

Model comparison

The selection of genes whose smoothed scores correlated with case-control status was per-

formed without considering the relative contribution of other established confounders such as

sex and age. Therefore we sought to assess whether or not the smoothed scores carry any addi-

tional predictive power on top of the variation captured by such confounders, and to what

extent. In ADNI, an extended logistic regression model including the smoothed score for

PFAS significantly improved goodness-of-fit to case-control status over a baseline model

including established AD predictors (sex, age, APOE ε4 count, education, population struc-

ture; chi-squared test p = 2x10-4). Additionally, the extended model showed a higher pseudo-

R2 statistic (p-R2 = 0.36) than the baseline model (p-R2 = 0.33), approximately equivalent to an

additional 3% variance explained in the outcome.

In ADSP, we found that CSNK1A1 was a second neighbour of PFAS, had a selection proba-

bility of 1 and provided the best improvement in goodness-of-fit to case-control status over

the baseline model including sex, age and APOE ε4 (chi-squared test corrected p = 1x10-36;

Table 1).

Survival analysis

We postulated that the smoothed scores possess unique properties in that they condense in a

biologically meaningful way information on how SNVs in a neighbourhood interact, acquiring

an increased sensitivity to disease phenotypes. We therefore set out to further characterise the

properties of such scores by assessing their relationship not only to simple case-control status

but also to risk of clinical disease progression to AD.

The “raw” (binary) SNV status and smoothed score for PFAS in ADNI were tested for asso-

ciation with risk of conversion to AD using Cox proportional hazards model. The binary SNV

status of PFAS was not seen to influence the probability of conversion to AD (p = 0.65; S9A

Fig). The inclusion of covariates (see Methods) confirmed this result (pPFAS = 0.82; S9B Fig).

Conversely, the smoothed score of PFAS showed a statistically significant protective effect

against conversion to AD (pPFAS < 0.001; Fig 4) on top of the effect of other established con-

founders. The score was still significantly associated when removing healthy controls from the

survival analysis to partially avoid circularity issues (p = 0.008; S9C Fig).

Gene set enrichment analysis

Next, we examined the community of genes surrounding PFAS through gene set enrichments

analysis, to see if PFAS can be regarded as hub of a module enriched in genes related to AD.

Significant overlap was found for the 1,449 genes of interest with 1,815 gene sets from Gene

Ontology (GO), Chemical and Genetic Perturbations (CGP), KEGG and REACTOME, at

FDR of 5%. Enrichment p-values for eight gene sets related to AD are reported in S4 Table. A

high-level visual representation of 928 significantly overrepresented GO terms in their seman-

tic space can be found in S10 Fig. The KEGG AD pathway and the four sets curated by Blalock

et al. [27] comprising dysregulated genes, were all significant at FDR 5%. Moreover,
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randomisation control showed that the overlaps observed with the four Blalock sets could not

be achieved by chance, as none of the randomly drawn gene sets returned uncorrected enrich-

ment p-values lower than the ones observed, and only 14 out of 1,000 random sets achieved

more significant overlap with the set of genes downregulated in AD curated by Wu et al. [28]

(S11 Fig).

Differential gene expression analysis

Motivated by the observed overlaps with sets of genes dysregulated in AD, we lastly sought to

investigate whether the percolation of rare variants’ effects through the network impacts the

transcriptomic profiles of the 30 genes identified in ADNI and ADSP, and furthermore,

whether this impact exhibits tissue specificity. To test this hypothesis, we leveraged two inde-

pendent, publicly available RNA-seq datasets: temporal cortex samples from the Mayo Clinic

Brain Bank, and parahippocampal gyrus samples from the Mount Sinai Brain Bank.

In the Mayo RNA-seq dataset for temporal cortex, none of the investigated genes showed

significant dysregulation between controls and AD cases after correction for cell type gene

markers. Full results and visualisations of the differential expression analysis in the Mount

Fig 4. Survival analysis with the smoothed score for the gene resulting from stability selection on the ADNI dataset. The forest plot depicts hazard ratios from Cox

proportional hazards model with confidence intervals and statistical significance. The score resulting from network propagation for PFAS was seen to be significantly

associated with lower risk of conversion to AD.

https://doi.org/10.1371/journal.pcbi.1008517.g004
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Sinai dataset for parahippocampal gyrus are reported in S5 Table and S12 Fig. In this dataset,

we observed a trend towards downregulation for PFAS and SHOC2 in controls vs definite AD

(pPFAS = 0.04; pSHOC2 = 0.001); however these did not survive multiple comparisons correc-

tion. Sixteen genes among the 30 analysed were found to be differentially expressed in at least

one pairwise comparison of disease severity. A randomisation control demonstrated that this

number is significantly higher than it would be expected by chance (p< 0.001; S13 Fig). In

particular, significant dysregulation in controls vs definite AD was observed for ARL1,

ATXN10, CAMK2B, CAPNS1, EFNB3, GNB1, KCNMA1, KLC1, MAPRE1, MAPRE3, MOB4,

and TREM2. The tissue specificity of the differential expression results (i.e., dysregulation seen

in parahippocampal gyrus but not in the temporal cortex as a whole) can be interpreted as a

reflection of the use of a tissue-specific gene interaction network (hippocampus) and of the

high spatial variability in brain transcriptomic profiles.

Discussion

In this work we presented NETPAGE, a computational tool for gene-based association testing

of rare variants that integrates prior knowledge about tissue-specific gene interaction net-

works. The aim was to boost the information content assigned to each gene, by enriching it

with the knowledge of the pathways through which rare variation percolates. NETPAGE lever-

ages the well-known strength of network propagation, combining it with multivariate sparse

regression to identify genes robustly associated with a disease phenotype by analysing the

genome-wide landscape as a whole and without the need for stringent statistical corrections.

NETPAGE allowed us to reveal correlations between the propagation of rare variant effects

at the gene level and disease outcomes (both diagnosis and risk of conversion), as well as tis-

sue-specific downstream effects of such propagation at the transcriptomic level. We tested the

proposed method on a small dataset (ADNI), as well as on a medium-sized sample (ADSP).

This enabled us to put the spotlight on a set of genes mutually connected in the hippocampus

network and belonging to the same neighbourhood of diameter two. We were also able to

demonstrate robustness to the choice of network by replicating the association with PFAS with

the STRING PPI network. But one of the core features of NETPAGE is its flexibility and appli-

cability to a wide range of traits and diseases whose genetic architecture follows the trend

described by Manolio et al. [2].

We investigated the behaviour of the network propagation step in NETPAGE through sim-

ulated data for a range of SNV frequencies, and optimised some of the key parameters of the

diffusion process. As expected, when the neighbouring genes’ SNV frequencies do not differ

between cases and controls, no difference is detectable in the smoothed score of the hub gene,

whereas different SNV frequencies in the neighbouring genes always flow into the hub to

determine a smoothed score significantly different between cases and controls, even when the

hub gene itself is not mutated, under a range of parameters and mutation scenarios. In agree-

ment with Hofree et al [19], we also found the diffusion length α to have a minor, if not negli-

gible, effect on the hub gene’s smoothed score over a sizable range and in all mutation

scenarios considered. However, in contrast to Hofree et al., we found the final quantile nor-

malisation step to be detrimental to the process and therefore excluded it from our applica-

tions to real data.

Since we regard NETPAGE as a gene-based association testing tool, we compared its per-

formance against SKAT-O, a state-of-the-art method for gene- and set-based association test-

ing of rare variants, in both datasets. In contrast to Bis et al. [11], SKAT-O on ADSP did not

identify any gene-wide significant gene (S8 Fig). Unexpectedly, not even TREM2 showed a

gene-wide significant association in our SKAT-O analysis of ADSP, despite being nominally
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significant (p = 9x10-3). We are inclined to interpret this result as a consequence of different

annotation pipelines and our selection criteria being somewhat stricter (despite applying the

same CADD threshold), leading to a drastic reduction in the number of SNVs to be grouped

and tested (270,165 here vs 918,053 variants in Bis et al. [11]), and likely to result in much

lower burden test statistics. Additional negative controls in ADNI compared NETPAGE to

mass-univariate testing of smoothed scores, stability selection on the “unsmoothed” SNV bur-

den, and evaluated the impact of different networks (random, non-brain, and other brain

components) on stability selection. None of these techniques reported any association at the

gene-wide, Bonferroni-corrected significance threshold or at the selection probability thresh-

old of 80% (S3 and S7 Figs and S2 Table), and the gene selection was also tissue-specific in

brain (S4 Fig), clearly demonstrating the added value provided by our approach. On the sub-

ject of tissue-specificity, it is important to note that there is no “correct” or “incorrect” tissue

network in an absolute sense, but the relevance of the network needs to be evaluated in refer-

ence to the disease under investigation. By using networks for non-brain tissues and other

brain regions, we intended to show that results change by tissue and that, when a tissue unre-

lated to Alzheimer’s disease is investigated (such as the medulla oblongata in S4 Fig), the

selected gene(s) do not show biological relevance to the disease. In the case of ZBBX, this gene

does not map to any known pathways and we could not find evidence in the scientific litera-

ture of links with Alzheimer’s disease.

There are many network propagation-based methods proposed over the last years, such as

CATAPULT [29], HotNet2 [30], or NBS [19]. However, benchmarking NETPAGE against

these methods is not a straightforward task, since these methods were designed for purposes

fundamentally different from association testing, namely gene prioritisation, module detec-

tion, or patient stratification, respectively. There are also several recent studies where network

propagation has been leveraged to boost power of genetic association testing with remarkable

improvements [31–33]; however, these applications are substantially different from NET-

PAGE, in that the focus there was on common variation (GWAS datasets) while here we set

ourselves the more challenging task of investigating rare variants in NGS experiments.

We also investigated the effect of different selection criteria to include SNVs in the rare var-

iant burdens to be propagated through the network. When we focused on stop-gain, stop-loss

and frameshift insertions to derive our gene burdens for network propagation, we did not

detect any association signal. This type of rare variants has generally a higher functional impact

than missense variants, and is therefore usually subject to stronger selective pressure due to a

dramatic decrease in fitness. This translates into even sparser SNV profiles, whereby the “sig-

nal enhancement” capability of network propagation is still not sufficient to reveal separation

between cases and controls. We conclude that the inclusion criteria for SNVs–which are not to

be regarded as a parameter of the algorithm underlying NETPAGE but rather as a user

choice–need to reflect careful consideration of the disease area under study as well as the

experimental conditions (sample size, sequencing technology and the like).

The genes identified by stability selection exhibit connections to a number of intermediate

phenotypes and biochemical processes relevant to AD. For instance, there are multiple, dis-

tinct lines of evidence linking PFAS (phosphoribosylformylglycinamidine synthase) to Alzhei-

mer’s Disease. Common missense variation in PFAS has been linked to low-density

lipoprotein (LDL) cholesterol measurement through GWAS [34,35], and elevated LDL choles-

terol is reportedly a risk factor for AD, through an increased production of beta-amyloid pro-

tein [36]. Additionally, Gene Ontology annotations for PFAS include the term ‘glutamine

metabolic process’ (GO:0006541). The metabolism of glutamine and the glutamine-glutamate

cycle takes place in the brain at the astrocyte level [37], and disruptions in this cycle leading to

glutamate excess in the synaptic cleft trigger neuronal excitotoxicity, which has been
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implicated in AD [38]. But most importantly, PFAS is involved in the purine metabolism path-

way (see for instance the KEGG pathway hsa00230), whose purpose in humans is to maintain

an optimal level of the nucleotides in the tissues. Several studies have implicated perturbations

in purine metabolism in the mechanisms of neurodegenerative disorders, including AD. For

instance, Xiang et al. [39] found evidence for a role of the purine metabolic pathway through

an integrative approach bringing together GWAS, KEGG pathways and gene expression;

proteomic profiling in Kaddurah-Daouk et al. [40] showed that the purine pathway is directly

related to CSF total tau; Ansoleaga et al. [41] showed stage- and region-dependent deregula-

tion of purine metabolism in AD by analysing mRNA expression levels of purine metabolism

genes in entorhinal cortex samples (the entorhinal cortex surrounds the hippocampus and is

one of the earliest regions to be affected by tau accumulation in AD). Lastly, González-Domı́n-

guez et al. [42] showed metabolic alterations compatible with deregulation of the purine path-

way mainly localised in the hippocampus of the APP/PS1 mouse model of AD. Hence it seems

plausible that rare deleterious variation in PFAS or its functional neighbourhood should

increase susceptibility to AD through its impact on cholesterol and glutamate levels as well as

the synthesis and metabolism of purines.

The association of rare, loss-of-function SNVs in TREM2 with AD is already well-established

[43]; a discovery that historically paved the way to crucial findings about the role of neuroin-

flammation, microglia and innate immunity in AD [44–46]. Additionally, interactions for other

NETPAGE-selected genes such as APPBP2 and CAPNS1 have been reported with the amyloid-

precursor protein APP [47,48]. Furthermore, the local gene-interaction neighborhood of

CAMK2B, which was identified by NETPAGE, shows a series of compelling dementia risk

genes (Fig 3C): key players in familial AD (APP, PSEN2), genes in which rare variation is linked

to sporadic AD (PLD3, ABCA7, SORL1; [49–51]), GWAS genes (APOE, CLU, BIN1, PICALM),

genes identified through multivariate imaging genetics studies (TRIB3; [52]) and genes causal

for other neurodegenerative diseases (MAPT, GRN, HTT, OTUD4 [53]). The selected hub genes

therefore recapitulate the biology of some of the most important pathological processes and risk

factors not only for AD, but for a broadly-defined neurodegenerative phenotype.

We demonstrated the successful application of NETPAGE to two independent datasets,

one of small sample size (ADNI) and the other of moderate sample size (ADSP). In conducting

these experiments, we did not seek to achieve replication of the selected genes; this task is an

intrinsically challenging one, given the rarity of the SNVs considered, the difference in cover-

age (an additional 3,000 genes were tested in ADSP that were not present in ADNI), and the

small sample considered in ADNI. Our main focus was to demonstrate the validity of the pro-

posed method in application to two very different, real-world experimental scenarios. How-

ever, it is indeed remarkable that short-range functional connections link a subset of the genes

selected in the two datasets in a statistically significant fashion (S6 Fig), and we believe this to

be a powerful proof of the working hypothesis underlying NETPAGE.

The role of PFAS as hub of a molecular pathway disrupted in AD is further strengthened by

the finding of extensive and significant overlaps between the subnetwork centred on PFAS and

the KEGG AD pathway, as well as with curated sets of genes affected by transcriptional dysregu-

lation at distinct stages of the disease (S5 Table and S11 Fig). Additionally, the neighbourhood

of PFAS appears to be enriched in genes related to a number of key ontology terms (S10 Fig),

among which: biological processes such as cell ageing, microtubule-based processes, and

mRNA metabolism; and cellular components such as mitochondria, myelin sheath, axon cyto-

plasm, and ribonucleoprotein complexes [54]. These overlaps provide additional support to the

hypothesis that rare deleterious variation percolates through the network structure to signifi-

cantly alter the protein landscape of the cellular environment in a pathological way. However,

we also showed that these alterations are tissue-specific (and most likely even cell type-specific),
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since we reported differential expression for some of the core genes identified in the parahippo-

campal gyrus from the Mount Sinai dataset but not in samples from the broader temporal cor-

tex in the Mayo RNA-seq dataset, at different disease stages (S5 Table). More importantly, we

observed transcriptional alterations in relation to AD diagnosis in more than half of the putative

core genes investigated, and demonstrated that this effect could not have been observed by

chance (S13 Fig). This finding can be interpreted as pointing towards a co-expression module

altered by disease. This further supports our idea that integrating information about variation

and interactions is a powerful approach to gain a comprehensive, systems-level view of disease-

related molecular mechanisms, as opposed to the investigation of single variants or genes of

interest. However, as we did not detect differential expression for all the genes identified, we

speculate that the link between these putative core genes and AD might reside in molecular

mechanisms other than RNA or protein abundance, such as splicing, regulation or post-transla-

tional modifications. Some evidence in this direction is provided by a significant enrichment in

genes related to post-transcriptional regulation of gene expression (S10 Fig, top panel).

We proposed NETPAGE, a methodology that enables the exploration of biological pathways

through which structural variation affects tissue function and results in complex disease pheno-

types. The rationale followed by NETPAGE resembles aspects of the recently proposed, although

debated, omnigenic model [14,55]. There remain, however, some limitations. First, an inherent

difficulty is that the ADNI dataset is a low-coverage WGS, while ADSP is WES, which can be

biased due to the required exome enrichment step. Therefore, on one hand ADNI might not pro-

vide a very clean signal, while on the other hand ADSP might not enable a strict validation due to

the different sequencing methods utilised. Second, we restricted this initial study design to include

only rare exonic SNVs whose deleteriousness was assessed through the CADD score. Extensions

of this work may address the impact on gene discovery of choices related to the study design, such

as the CADD threshold for deleterious SNVs inclusion or the inclusion of intronic and regulatory

variants. Motivated by the observation that the selected genes are all hubs of the hippocampus net-

work (S3 Table), we envisage that future method developments may also include an alternative

test, where the score from network propagation is compared to an expected score based solely on

gene degree. Finally, the use of an established sparse regression framework makes NETPAGE a

highly flexible method, therefore future work may explore the relationship between smoothed

rare variant profiles and AD-related continuous traits, such as imaging or fluid biomarkers,

beyond the simple binary definition of diagnosis.

In summary, we demonstrated a novel application of network propagation to the study of

rare variant effects on complex traits in two sporadic, late-onset AD cohorts. NETPAGE

allowed us to identify a set of genes as tightly interconnected network hubs where the down-

stream influence of rare variants accumulates and acquires predictive power for diagnosis, as

well as to provide multiple lines of evidence for the biological meaning of the smoothed scores

and the tissue-specific involvement of some core genes at the transcriptional level. We empha-

sise the flexibility of the presented methodology, that enables enhanced association testing for

binary and continuous traits, as well as small and large sample sizes, as NGS is becoming an

increasingly affordable alternative to SNP genotyping and adopted in many cohort and bio-

bank studies. We believe NETPAGE is a promising approach for determining novel genetic

influences on complex traits and for providing mechanistic insights into disease biology.

Materials and methods

Ethics statement

The use of off-the-shelf de-identified human subject information from the Alzheimer’s Disease

Sequencing Project (ADSP) was conducted at Stanford University and was exempt from
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Institutional Review Boards approval. The analysis of off-the-shelf de-identified human subject

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was conducted at UCL

and was exempt from ethics approval. The analysis of off-the-shelf de-identified human subject

data from the Mayo Clinic and Mount Sinai Brain Bank was conducted at UCL and was

exempt from ethics approval, as all data is publicly available for download from Synapse.

ADNI WGS data preprocessing

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) database (adni.loni.usc.edu) and the Alzheimer’s Disease Sequenc-

ing Project (ADSP) [7]. The ADNI was launched in 2003 as a public-private partnership, led

by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test

whether serial magnetic resonance imaging (MRI), positron emission tomography (PET),

other biological markers, and clinical and neuropsychological assessment can be combined to

measure the progression of mild cognitive impairment (MCI) to early AD. For up-to-date

information and a complete list of investigators, see www.adni-info.org and S2 Text. The

ADNI WGS dataset was used for application to a small sample size. SNVs and small inser-

tions-deletions (indel) data was available for 808 ADNI subjects. WGS data in Variant Call

Format (VCF) was downloaded from the ADNI database. AD case or control status was avail-

able for 476 out of 808 individuals (for the remaining participants the latest diagnosis available

was of MCI). Demographics and clinical outcomes for this sample are presented in Table 2.

ADSP WES data preprocessing

The ADSP WES dataset (N = 10,913) was then used for application to a moderate sample size.

We identified 24 samples who were also sequenced as part of ADNI, who were then removed

from the ADSP WES dataset, yielding a sample size of 10,889 (S1 Text). Demographics and

clinical outcomes for this final sample are presented in Table 2.

Ancestry and population structure

Ancestry and population structure on the ADNI dataset were previously analysed from GWAS

data, using SNPweights version 2.1 [56] and a two-step procedure described in [57]. We

leveraged the results of this analysis to retain only study participants showing a probability of

being of Caucasian ancestry greater than 80% (N = 439 AD cases and controls). For these sub-

jects we also obtained principal components of population structure to be used in subsequent

analyses.

In ADSP, due to the absence of GWAS data, individuals were filtered based on self-reported

ethnicity and racial background, to include only Caucasian participants (self-reported white

race and not hispanic or latino ethnicity; N = 10,413). Lastly, case-control status was available

for 10,186 of these Caucasian individuals.

Table 2. Demographics and clinical outcomes for the ADNI WGS case/control sample and the ADSP WES case/control sample.

ADNI ADSP

HC AD Total HC AD Total

Sample size 246 230 476 4,796 5,852 10,648

Women 134 92 226 2,819 3,371 6,190

White, not hispanic or latino 222 217 439 4,601 5,585 10,186

Age at latest visit (mean ± sd) 78.3 ± 7.27 79.1 ± 7.58 78.69 ± 7.42 86.1 ± 4.53 75.4 ± 8.45 80.19 ± 8.76

APOE ε4 (0/1/2) 181/64/4 80/117/33 261/181/37 4,080/701/15 3,379/2,314/159 7,459/3,015/174

https://doi.org/10.1371/journal.pcbi.1008517.t002
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Variant filtering and mapping

We used ANNOVAR, 01/06/2017 release [58] to annotate the SNVs, retaining only exonic,

non-synonymous SNVs, with MAF <1% in non-Finnish-Europeans from the Exome Aggre-

gation Consortium [59]. Variants were further filtered based on deleteriousness, by retaining

SNVs ranked among the top 1% according the Combined Annotation-Dependent Depletion

(CADD) method (CADD phred score>20) [60]. Exonic SNVs were mapped to genes accord-

ing to annotations based on the RefSeq database [61]. These filtering and mapping procedures

were applied to the ADNI and ADSP datasets separately. This resulted in 48,834 rare, non-syn-

onymous SNVs mapped to 13,591 genes in ADNI, and 270,165 rare, non-synonymous SNVs

mapped to 16,630 genes in ADSP.

To assess the impact of the filtering criteria outlined above we constructed a second set of

SNVs, by retaining exonic variants with MAF < 1% predicted to have a stop-gain, stop-loss or

frameshift consequence. We also applied the CADD phred > 20 filter to stop-gain and stop-

loss variants, and performed mapping to RefSeq genes.

Tissue-specific gene interaction networks

As a substrate for network propagation, we leveraged tissue-specific weighted gene interaction

networks from Greene et al. [15]. In these networks, each node represents a gene, each edge a

functional relationship, and an edge between two genes is probabilistically weighted based on

experimental evidence connecting both genes. We focused on the interaction network for the

human hippocampus, being the key brain structure related to the loss of episodic memory in

AD [62]. Additional negative controls were performed using: 30 replicates of a degree-preserv-

ing randomised version of the same hippocampus network, obtained by adapting a publicly

available python implementation by C. Lasher (https://gist.github.com/gotgenes/2770023#file-

edgeswap-py); and a gene network not related to brain tissue, specifically the umbilical cord

network. We also performed network propagation in different brain structures or components

(neuron, medulla oblongata, diencephalon) to investigate the specificity of association results

to AD-related brain regions. Lastly, we investigated the robustness of the method with respect

to the network structure and derivation methods by using the human, non-tissue-specific pro-

tein-protein interaction network (PPI) available through the STRING database [21] and the

recently published human ‘all-by-all’ reference interactome map of human binary protein

interactions, or ‘HuRI’ [63].

Propagation of rare variant signals through gene interaction networks

To model the propagation of the effects of rare variants through a gene interaction network,

we adopted the network propagation approach first introduced by [64] for semi-supervised

learning. In our case, a gene carrying a deleterious variant is used as a seed in an iterative pro-

cedure that propagates its effect according to the network structure. Hence the effect propaga-

tion effectively reproduces a graph-constrained diffusion process whereby information from

the seed gene flows not only to its first neighbours but to all genes in a connected component,

and the amount of information flowing into a gene is determined by the strength of its connec-

tions to the source gene.

Practically, a single individual’s whole genome data is represented as a gene-based vector of

length M, where for each gene the rare variant burden can be encoded as either the count of

rare deleterious variants (rare-variant burden) or a binary variable indicating the presence or

absence of any such variant (rare-variant status). Stacking these vectors of all S subjects yields

the sparse matrix G0 2 NS�M
. A network can be either in the form of a weighted graph,
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represented by a square, symmetric, similarity matrix N 2 RM�M with 0�Nij�1, or in the form

of an unweighted graph, represented by a square, symmetric adjacency matrix N 2 NM�M
with

Nij2{0; 1}. The gene burden G0 is propagated through the network simultaneously for all sub-

jects according to the following iterative procedure:

Gtþ1 ¼ aGt � ðD � NÞ þ ð1 � aÞG0 ð1Þ

where Gt+1 is the smoothed rare variant profile at iteration t+1; α2[0,1] is a tuning parameter

governing the distance a signal is allowed to diffuse through the network, and D 2 RM�M
is a

diagonal matrix with the inverse of the node strengths of N along the diagonal. Eq (1) is itera-

tively evaluated until convergence (i.e., until the L2-norm of Gt+1−Gt is smaller than a pre-spec-

ified threshold).

Our implementation of network propagation in NETPAGE allows the user to specify:

whether the network used is a gene- or a protein-interaction network, and the gene/protein

naming convention; the type of encoding used in the input file (i.e., if rare-variant burden or

rare-variant status is used); the convergence threshold on kGt+1−Gtk2 (default 10−6); the diffu-

sion length α (default 0.5); this was optimized through simulation; whether the full weighted

graph is to be used to guide the diffusion process, or if a graph adjacency matrix is to be gener-

ated from the original graph by retaining only the top P% edges (we refer to this procedure as

network binarisation); the percentage P of top edges to be retained, in case network binarisa-

tion is to be performed (default 1%); this was optimized through simulation; whether the gene

interaction network features self-loops (default False); whether the rows of the smoothed rare

variant profile are to be quantile-normalised after convergence (default False). Quantile nor-

malisation is the last step performed after network propagation by NBS [19], to ensure that the

smoothed rare variant profile for each patient follows the same distribution.

Network propagation is sensitive to the direction of rare variant’s effect (i.e., protective vs. delete-

rious), therefore the user can choose if and how to deal with the direction of effects of the genes’

rare variant burdens with respect to a given binary phenotype. Briefly, the bioinformatics assessment

of deleteriousness (e.g., CADD score) is unrelated to any disease phenotype, hence the rare variant

status of a given gene can be equally risk-increasing or protective with respect to a specific binary

phenotype, resulting in blended effects in signal-receiving genes. Therefore, we require a mecha-

nism to numerically distinguish the “signal” flowing into a hub from a protective gene from the “sig-

nal” coming from a risk gene. In light of this, we are providing the user with additional flexibility to

either: set to 0 the rare variant status/burden of protective genes; set to 0 the rare variant status/bur-

den of risk genes; set the rare variant status to -1 for protective genes and to +1 for risk genes; none

of the above. Risk and protective genes are determined by the direction of effect of their rare variant

status on the case-control status (odds ratio from a Fisher’s test on the 2x2 contingency table).

A Python 2.7 module implementing network propagation for this study is available at

https://github.com/maffleur/NETPAGE.git.

NETPAGE: application to AD sequencing data

We performed network propagation on the full (i.e., without filtering on ancestry or diagnosis)

ADNI and ADSP datasets separately. Each subject-level rare variant burden (row of the G0

matrix) was encoded as a binary vector of length M (0 = gene not carrying any of the selected

SNVs, 1 = gene carrying at least one of the selected SNVs). The G0 matrix in ADNI described

the rare-variant status of 13,310 genes for 808 study participants. The G0 matrix in ADSP

described the rare-variant status of 16,268 genes for 10,889 study participants. In both applica-

tions, we used the default values for the parameters α and P, as optimised through simulations,

and set the rare-variant status to -1 for protective genes and to +1 for risk genes.
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Stability selection

In order to identify genes robustly associated with disease, smoothed rare variant profiles

resulting from network propagation were related to clinical diagnosis via sparse logistic

regression. We applied LASSO regression [22] as implemented in the R package glmnet [65].

Briefly, glmnet finds the coefficients’ vector β that solves the following regularised regression

problem:

minb0 ;b

1

N
PN

i¼1
lðyi; b0 þ b

TxiÞ þ ljbj1 ð2Þ

over a range of values for λ. Here l(y, yest) is the negative log-likelihood contribution for obser-

vation i. In Eq (2), N is the number of observations (subjects), β0 is the model intercept and

β the vector of regression coefficients. For subject i, yi is the value of the response variable, and

xi a vector of predictors. The LASSO or L1-regularisation corresponds to minimising the

L1-norm of the coefficients’ vector |β|1. As a consequence, most of the coefficients in β shrink

to zero, achieving efficient variable selection. The amount of regularisation is controlled by λ,

also known as sparsity hyperparameter. Here, we performed stability selection [23], as imple-

mented in the R package stabs [66], to automatically tune the sparsity hyperparameter while at

the same time performing feature selection. In brief, stability selection combines variable selec-

tion with bootstrap resampling to estimate a probability value for each variable to be selected

by the sparse regression. For a given regression task, we performed 100 bootstrap (split-half)

resamplings and focused on smoothed gene scores with a selection probability higher than

80% over a range of values for the sparsity hyperparameter λ. Stability selection in ADNI was

performed on smoothed scores for M = 13,310 genes and N = 439 Caucasian subjects (222

healthy controls [HC], 217 AD; date accessed April 24th, 2018). Stability selection in ADSP

was performed on smoothed scores for 16,298 genes and 10,186 Caucasian subjects (4601 HC,

5585 AD).

Gene-based rare variant association testing

We conducted gene-based association testing for rare, deleterious SNVs with clinical diagnosis

in ADNI with a state-of-the-art method, in order to benchmark NETPAGE’s performance.

Specifically, we used SKAT-O [25], which combines burden and variance-component tests,

implemented in the R package SKAT [10]. Diagnosis at the latest available time point was

coded as a dichotomous trait (HC vs AD). Associations were tested for M = 13,591 genes con-

trolling for age, sex, number of APOE ε4 alleles, years of education, and two principal compo-

nents of CEU population substructure (see section Ancestry and population structure).
Genome-wide significance was established at p< 0.05/13,591 = 3.6x10-6. Additionally, to dem-

onstrate the advantage of our multivariate approach, a mass univariate test of association

between the smoothed gene scores and case-control status was also conducted via logistic

regression for M = 13,310 genes, controlling for the same confounders listed above. Genome-

wide significance was established at p < 0.05/13,310 = 3.75x10-6. The sample for both these

tests comprised 439 Caucasian cases and controls from ADNI.

We further conducted a gene-based association test with SKAT-O on the same 10,186

European subjects from ADSP used for stability selection; 270,165 non-synonymous SNVs

were grouped into 16,630 genes. Associations were tested correcting for age, sex, number of

APOE4 alleles, and sequencing centre. The aim of this test was to benchmark NETPAGE

against a state-of-the-art method on a dataset that enables sufficient statistical power to detect

associations, as it has been already reported [11].
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Set-based rare variant association testing

We conducted set-based association testing for rare, deleterious SNVs with case/control status

in ADNI. Gene sets were defined from the results of stability selection: each selected gene was

grouped with its first neighbours in the hippocampus network. Burden, variance-component,

and omnibus (SKAT-O) tests were performed with this set definition.

Model comparison

After stability selection, we focused on the smoothed score of the top selected gene. With it, we

built two logistic regression models: a baseline model, including case-control status as

response, and as predictors the same set of covariates used for SKAT; and an extended model,

adding to the predictors in the baseline model the smoothed score of the selected gene. Sample

size for these models was 439 Caucasian cases and controls from ADNI. We compared the

goodness-of-fit of the two models through a chi-squared test. Additionally, we computed the

pseudo-R2 statistic (the analogue of the percentage of variance explained in linear regression

models) for the baseline and the extended model. We used the McFadden method in the Pseu-

doR2 function in the R package DescTools [67]. We repeated the same procedure for the

ADSP-selected genes, one at a time. P-values from the chi-squared tests were corrected for

multiple comparisons using the Bonferroni procedure (Table 1). The predictors for the base-

line model now included only sex, age and number of APOE ε4 alleles. Years of education was

not recorded among the ADSP phenotypes. It was also not possible to compute CEU popula-

tion substructure, due to lack of GWAS data. Sample size for these models was 10,186 Cauca-

sian cases and controls.

Survival analysis

We conducted survival analysis on the selected genes in ADNI with the R packages survival
[68] and survminer [69]. The event considered was either conversion from HC to AD or con-

version from MCI to AD. The time variable was age at dementia onset if conversion occurred;

or age at latest diagnosis if conversion did not occur (right-censored time-to-event). Sample

size was N = 732 ADNI Caucasian subjects with WGS data (>80% CEU ancestry). For the

selected genes we considered both the “raw” (0/1) rare variant status, and the smoothed score

derived with network propagation. For each gene, we first modelled and compared survival

curves for SNV carriers vs non-carriers (log-rank test); we then refined the comparison of car-

riers and non-carriers by fitting Cox proportional hazards models, controlling for sex, number

of APOE ε4 alleles, years of education, and two principal components of population. Lastly, we

fitted the same Cox models replacing the binary rare-variant status for the gene with its

smoothed score, retaining the same set of covariates. Because healthy controls were already

used for stability selection, in order to mitigate the risk of a circular analysis we repeated the

analysis excluding stable healthy controls (NHC = 222, final sample size N = 510), therefore

focusing only on stable MCI who did not convert to AD as the event-free population.

Gene-set enrichment analysis

Gene set enrichment analysis was performed on the gene selected in the ADNI dataset,

together with its first and second neighbours in the thresholded and binarised hippocampus

gene network. This yielded a set of 1,449 genes to be tested. As background set, we used the set

of M = 13,310 genes resulting from network propagation on the ADNI dataset. We tested for

enrichment using the Gene Ontology (GO) and chemical and genetic perturbation (CGP)

gene sets, as well as the KEGG and REACTOME pathway collections available in the
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Molecular Signatures Database v6.1 [70]. Overrepresentation of the selected genes in these

curated sets was tested with the Fisher’s exact test. Enrichment p-values were adjusted for mul-

tiple comparisons using the Benjamini-Hochberg procedure at a false discovery rate of 5%.

Significant GO terms were aggregated in hierarchies and visualised through ReViGO (http://

revigo.irb.hr/revigo.jsp) [71]. For seven CGP gene sets relevant to Alzheimer’s disease, we fur-

ther applied a randomisation procedure to ensure that the observed enrichments could not be

achieved by chance. We formed 1,000 set replicates by randomly drawing 1,449 genes from the

background; every set replicate was tested for overrepresentation in the seven CGP sets, then

the p-values from the original set were compared to the distributions of p-values from the ran-

domised sets.

Differential gene expression analysis

Motivated by the observed overlaps with sets of genes dysregulated in AD, we lastly sought to

investigate whether differential expression between cases and controls occurs for genes

selected in ADNI and ADSP. In order to investigate also the tissue-specificity of this effect, we

leveraged two independent RNA-seq datasets: the Mayo Clinic Brain Bank (MCBB) [72] and

the Mount Sinai Brain Bank (MSBB) [73]. Within these datasets, we specifically focused on

post-mortem expression levels in the temporal cortex and parahippocampal gyrus (Brodmann

area 36), respectively. This choice aimed at maximising proximity and consistency with the

hippocampal gene interaction network used in the discovery phase, being aware of the high

degree of spatial variability in transcriptomics patterns across the brain. All data was accessed

through the AMP-AD Knowledge Portal (www.synapse.org). For the Mayo dataset, we lever-

aged publicly available results of differential expression analysis, with and without correction

for neuronal marker gene levels (Synapse ID syn6090802). RNA sequencing and processing at

the MSBB was described in detail elsewhere [73]. Each sample was assigned a neuropathology

category according to the Consortium to Establish a Registry for Alzheimer’s Disease

(CERAD) protocol (1 = normal, 2 = definite AD, 3 = probable AD, 4 = possible AD) [74]. We

formed a gene set of interest comprising genes selected in ADNI and ADSP; we then used the

Dunn’s test for stochastic dominance [75] to perform pairwise nonparametric testing for dif-

ferences in normalised gene expression levels between CERAD neuropathology categories in

this gene set of interest. P-values were corrected for gene-wise, pairwise comparisons using the

Benjamini-Hochberg procedure at a false discovery rate of 5%, and the Bonferroni method for

the number of genes tested. Lastly, we performed a randomisation control to quantify the

probability of seeing N genes with a significant differential expression among M genes ran-

domly drawn from the MSBB dataset. We formed 1000 sets of M randomly drawn genes, con-

ducted the Dunn’s test for each gene and set, and counted how many genes in each random set

showed significantly different expression in at least one pairwise comparison. We then plotted

the distribution of the number of randomly dysregulated genes and compared it to the actual

number of dysregulated genes found in the original set of interest.
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S6 Fig. Randomisation control over the amount of overlap between NETPAGE- selected

genes in ADSP and the interactome of PFAS. Eighteen out of 29 genes selected in ADSP were

observed in the interactome of PFAS (red vertical line). We formed 10,000 replicates of 29 genes

selected randomly from the 16,298 genes tested, and counted how many genes in these replicates

were also present in the interactome of PFAS. The amount of overlap observed with the genes

resulting from the ADSP experiment could not have been achieved by chance, but suggests the

presence of functional connections linking NETPAGE’s results in the two independent datasets.
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S7 Fig. Results of gene-based rare variant association testing in ADNI: (A) SKAT-O and

(B) mass-univariate testing of smoothed scores against case-control status, in 439 Caucasian

participants. Both tests were performed correcting for sex, age, years of education, number of

APOE 4 alleles, and first two principal components population substructure.
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S8 Fig. Results of gene-based rare variant association testing (SKAT-O) in 10,186 unre-

lated individuals of Caucasian ancestry from ADSP (16,630 genes tested). The gene-wide

significance threshold (red line) was set at 0.05/16,630 = 3x10-6. Gene-based models were cor-

rected for sex, age, number of APOE ε4 alleles, and sequencing centre.
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S9 Fig. Survival analysis for the gene resulting from stability selection in ADNI. (A)

Kaplan-Meier survival probability curves stratified by mutation status for PFAS. (B) The forest

plot depicts hazard ratios from Cox proportional hazards model with confidence intervals and

statistical significance. There was still no association between mutation status for PFAS and

risk of conversion after covariate correction. (C) Results of the same Cox model fitting as in

Fig 4, conducted after removing ADNI subjects diagnosed as cognitively normal at the latest
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used in this model were individuals with a stable diagnosis of MCI at the latest time point

available. This aimed at partially avoiding circular analysis issues, as cognitively normal indi-

viduals were used as control samples in the discovery phase involving stability selection (Fig

3). The score resulting from network propagation for PFAS was still seen to be significantly

associated with lower risk of conversion to AD after restricting to stable MCI the samples

where the conversion event did not occur.
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terms significantly enriched (at pFDR < 0.05) among the 1,449 first and second neighbours

of PFAS in the hippocampus network. Top, ontology terms from GO Biological Process; mid-

dle, terms from GO Cellular Component; bottom, terms from GO Molecular Function. Bubble

color indicates the term p-value (colour bar in lower right-hand corner); size indicates the fre-

quency of the GO term in the underlying database (bubbles of more general terms are larger).
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1000 gene sets randomly sampled from the background; the red line indicates the location

of the non-randomised, uncorrected p-values (P column in S3 Table). We show that the sig-

nificant overlap seen between our genes of interest and the AD-related gene sets curated by

Blalock (S3 Table) could not be achieved by chance, as none of the 1000 randomly drawn gene

sets achieved smaller p-values.
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S12 Fig. Differential expression analysis for 30 selected genes in the Mount Sinai Brain

Bank parahippocampal gyrus expression dataset. Full numerical results for all pairwise com-

parisons and their significance are provided in S4 Table.
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S13 Fig. Randomisation control over the differential expression analysis in the Mount Sinai

Brain Bank dataset. We formed 1,000 sets of 30 randomly sampled genes and tested each of

them for pairwise differences in expression levels among CERAD categories. We then counted

how many genes in each set showed significantly different expression in at least one comparison

and plotted their distribution. The red line indicates the 16 genes that showed significantly differ-

ent expression in the original gene set of interest (i.e., the 30 genes selected in ADNI and ADSP).

The data clearly shows that this amount of dysregulation could not be observed by chance, but is

indeed linked to the overrepresentation of disease-related genes in the set of interest.
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